

New values of time and reliability for project assessment of airport infrastructure

Jaap de Wit/Pim Warffemius Netherlands Institute for Transport Policy Analysis

Workshop GARS/IATA 20 June 2013

A Social Cost Benefit guide for Infrastructure projects in the Netherlands

- Some history from the nineties:
 - Hinterland rail link Rotterdam harbour: Betuwe line
 - Various SCBA with very different results and substantial cost overruns
- Extensive enquiry of a parliamentary committee late nineties followed by clear recommendations for infrastructure assessment

Since 2000 a new approach

Common methodology for SCBA in transport infrastructure (OEI guidelines)

See:

http://www.rws.nl/zakelijk/economische evaluatie/overzicht effe
cten infrastructuur/index.aspx

for two publications Evaluation of Infrastructural projects, Guide for cost-benefit analysis, section I main report, section II capita selecta

- application compulsary for major infrastructure projects. For example extension Port of Rotterdam (Maasvlakte II), ERTMS etc.
- Also airport expansion projects (extra runways) are subject to this approach

Key issues

- -only applied ex ante, ex post difficult
- -Partial CBA for smaller projects
- -Spatial scope of the project:
- 1. employment effects: crowding out or not
- 2.Domestic effects versus cross border effects: for airport projects effects relevant (travel time reduction foreigners, cross border emissions, profits KLM)

Key issues continued

welfare estimate		The Netherlands	foreign countries	
		priced effects	non-priced effects	
causal estin	nate	redistribution efficience	y efficiency redistribution	
direct effects	operators users third parties	operating profits		
Indirect effects				

Partial cost-benefit analysis

welfare estimate		The Netherlands			foreign countries	
		priced effects		non-priced	effects	
causal estim	ate	redistribution	efficiency	efficiency	redistribution	
direct effects	operators users third parties					
indirect effects						

Comprehensive cost-benefit analysis

welfare estimate		The Netherlands				foreign countries
		priced effects		non-priced effects		
causal estim	nate	redistribution	efficiency	efficiency	redistribution	
direct effects	operators users third parties					
indirect effects						

- -Direct effects: transport market
- -Indirect effects: other markets
- -External effects: outside the market
- -indirect welfare effects usually overestimated due to double counting: only additional indirect effects, not redistribution effects (for example: land value in the airport region) -rule of thumb 0-30% of the direct benefits: cluster, agglomeration and international competition effects

Important direct benefits in airport expansion projects:

- •Shorter travel times for air pax and cargo
- Improved travel time reliability

BUT WHAT ABOUT THE VALUE?

New values

- Based on research carried out by a consortium led by Significance,
 KiM has determined new values for the following transport modes:
 - Passenger transport: car, bus, tram, metro, train, airplane, and recreational navigation
 - Freight transport: road, rail, inland waterways, sea and air
- Why new values?
 - Update of older values necessary: travel behavior changes over time
 - Passenger transport: last empirical study conducted in 1997
 - Freight transport: last empirical study conducted in 2004
- Reliability: for the first time values based on empirical research
 - Replace old expert meeting based values
- Passenger air transport: also for the first time values determined through empirical research

How are the values determined?

- Stated-preference surveys
 - New approach data analysis for passenger transport
 - VoTs for passenger transport are based on so called Panel Latent Class models
 - For all technical details see Significance et al., 2012
- Two alternatives
 - Trip ATrip B
 - Transport A Transport B
- Four attributes
 - Travel time
 - Travel costs
 - Reliability
 - Arrival time

Three SP experiments

- Freight related to an observed typical transport
- Experiment 1 is the same as the earlier "Value of Time studies" (passengers in 1988 and 1997; freight in 2004)

Attribute	Experiment 1	Experiment 2a	Experiment 2b
Travel time	X	X	X
Travel cost	X	X	X
Reliability		X	X
Arrival time		X	

Example of an SP choice alternative (experiment 2a, b)

Trip A Departure time: 08:05 h You have an equal chance of the following five travel times and therefore of arriving at any of the following times: Travel time Arrival time 55 min 09:00 65 min 09:10 65 min 09:10 95 min 09:40 145 min 10:30 Usual travel time: 65 min Costs: € 2,30

Trip B						
Departure time: 08:05 h						
You have an equal chance of the following five travel times and therefore of arriving at any of the following times:						
Travel time		Arrival time				
50 min	\rightarrow	08:55				
60 min	\rightarrow	09:05				
	60 min → 09:05					
90 min	90 min → 09:35					
140 min	140 min → 10:25					
Usual tr	Usual travel time: 60 min					
Costs: € 7,80						

Data collection

- Passenger transport
 - Internet survey
 - Within on-line panel: 5,700 interviews (air passengers: 530)
 - Outside on-line panel: 1,400 interviews (air passengers: 200)
- Freight transport
 - CAPI (computer assisted personal interviews)
 - 800 interviews (air freight: 60)

Results for VoT and VoR: Air passengers

Airplane (Euro/hour p. person, market prices, price level 2010					
Trip Purpose	VoT	VoR	RR		
Business	85.75	56.00	0.7		
Non-business	47.00	30.75	0.7		
Average (*)	51.75	33.75	0.7		

• (*) weights of trip purposes are based on the minutes travelled in the base case of the stated preference survey

Results for VoT and VoR: Air freight

Air (in Euro/hour p. airplane, market prices, price level 2010)

Containers	VoT	VoR
Yes	n/a	n/a
No	14,950 (TR=0.72->1)	1,840 (RR= 0.12)
Average	14,950 (TR=0.72->1)	1,840 (RR= 0.12)

- TR= Trade-off Ratio
- VoT= TR * factor costs
- When an infrastructure project is completed, TR grows linearly to 1 over a 10-year period

Differences between old and new VoTs (1)

Air passengers (Euro/hour p. person, market prices, price level 2010)

Trip Purpose	Old	New	Difference
Business	52.00	85.75	+65%
Non-business	24.00	47.00	+96%
Average	33.24 (*)	51.75 (**)	+86%

- (*) weighting based on division trip purposes as expressed as number air passengers in Schiphol survey 2010
- (**) weights of trip purposes are based on the minutes travelled in the base case of the stated preference survey

Differences between old and new VoTs (2)

Air freight (trade-off ratios average transport)					
Mode	Old	New	Difference		
Air	1	0.72 -> 1	- 7%		

- VoT= TR * factor costs
- When an infrastructure project is completed, TR grows linearly to 1 over a 10-year period
- Difference is calculated based on this growth, a net present value calculation over 100 years, and a discount rate of 5.5%

Discussion

- Valuation method must be matched with the forecasting volumes resulting from air transport models
- Reliability should be included in traffic forecasting tools
 - Insight into behavioral responses of air passengers, air freight shippers and air freight carriers on changes in travel time reliability is needed
- The new social values of shorter and more reliable travel times for all transport modes and all technical details of the research (Significance et al., 2012) can be found on:
 - http://www.kimnet.nl/en/publication/social-value-shorter-andmore-reliable-travel-times